Selective cortical layering abnormalities and behavioral deficits in cortex-specific Pax6 knock-out mice.
نویسندگان
چکیده
The transcription factor Pax6 has been implicated in neocortical neurogenesis in vertebrates, including humans. Analyses of the role of Pax6 in layer formation and cognitive abilities have been hampered by perinatal lethality of Pax6 mutants. Here, we generated viable mutants exhibiting timed, restricted inactivation of Pax6 during early and late cortical neurogenesis using Emx1-Cre and hGFAP-Cre lines, respectively. The disruption of Pax6 at the onset of neurogenesis using Emx1-Cre line resulted in premature cell cycle exit of early progenitors, increase of early born neuronal subsets located in the marginal zone and lower layers, and a nearly complete absence of upper layer neurons, especially in the rostral cortex. Furthermore, progenitors, which accumulated in the enlarged germinal neuroepithelium at the pallial/subpallial border in the Pax6 mutants, produced an excess of oligodendrocytes. The inactivation of Pax6 after generation of the lower neuronal layers using hGFAP-Cre line did not affect specification or numbers of late-born neurons, indicating that the severe reduction of upper layer neurons in Pax6 deficiency is mostly attributable to a depletion of the progenitor pool, available for late neurogenesis. We further show that Pax6(fl/fl);Emx1-Cre mutants exhibited deficiencies in sensorimotor information integration, and both hippocampus-dependent short-term and neocortex-dependent long-term memory recall. Because a majority of the morphological and behavior disabilities of the Pax6 mutant mice parallel abnormalities reported for aniridia patients, a condition caused by PAX6 haploinsufficiency, the Pax6 conditional mutant mice generated here represent a valuable genetic tool to understand how the developmental cortical disruption can lead to a human behavior abnormality.
منابع مشابه
Altered molecular regionalization and normal thalamocortical connections in cortex-specific Pax6 knock-out mice.
Transcription factor Pax6 exerts a prominent rostrolateral(high) to caudomedial(low) expression gradient in the cortical progenitors and have been implicated in regulation of area identity in the mammalian cortex. Herein, we analyzed the role of Pax6 in molecular arealization and development of thalamocortical connections in the juvenile cortex-specific conditional Pax6 knock-out mice (Pax6cKO)...
متن کاملPrenatal Mercuric Chloride Exposure Causes Developmental Deficits in Rat Cortex
Introduction: Environmental pollution with heavy metals such as mercury is a major health problem. Growing studies on the field have shown the deleterious effects of mercury on human and nonhuman nervous system, especially in infants, however the effects of prenatal exposure to mercuricchloride on cortical development are not yet well understood. The aim of this study was to investigate the eff...
متن کاملDiacylglycerol Kinase β Knockout Mice Exhibit Lithium-Sensitive Behavioral Abnormalities
BACKGROUND Diacylglycerol kinase (DGK) is an enzyme that phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). DGKβ is widely distributed in the central nervous system, such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. Recent studies reported that the splice variant at the COOH-terminal of DGKβ was related to bipolar disorder, but its detailed mechanism is ...
متن کاملMutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine.
Norepinephrine strengthens the working memory, behavioral inhibition, and attentional functions of the prefrontal cortex through actions at postsynaptic alpha2-adrenoceptors (alpha2-AR). The alpha2-AR agonist guanfacine enhances prefrontal cortical functions in rats, monkeys, and human beings and ameliorates prefrontal cortical deficits in patients with attention deficit hyperactivity disorder....
متن کاملThe GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome.
Hyperactivity, hypersensitivity to auditory stimuli, and exaggerated fear are common behavioral abnormalities observed in individuals with fragile X syndrome (FXS), a neurodevelopmental disorder that is the most common genetic cause of autism. Evidence from studies of the Fmr1 knockout (KO) mouse model of FXS supports the notion that impaired GABAergic transmission in different brain regions su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 26 شماره
صفحات -
تاریخ انتشار 2009